
A

p
b
c
t
a
b
C
i
©

K

1

e
[
i
l
b
t

e
c
p
a
n

l

0
d

Available online at www.sciencedirect.com

Thermochimica Acta 468 (2008) 119–123

Short communication

The two faces of the Redlich–Kister equation and the limiting
partial molar volume of water in 1-aminopropan-2-ol

Jaime D. Gomes de Oliveira a, João Carlos R. Reis b,∗
a Centro de Ciências Moleculares e Materiais, Instituto Superior de Engenharia de Lisboa, 1949-014 Lisboa, Portugal

b Departamento de Quı́mica e Bioquı́mica, Centro de Ciências Moleculares e Materiais, Faculdade de Ciências,
Universidade de Lisboa, 1749-016 Lisboa, Portugal

Received 7 October 2007; accepted 5 December 2007
Available online 15 December 2007

bstract

The properties of the Redlich–Kister equation when expressed in power series of x1 − x2 are related to its alternative expression in terms of
ower series of x2 − x1, where x1 and x2 are mole fractions of the components 1 and 2 of a binary liquid mixture. The simple relationship between
oth sets of coefficients is derived and shown to conceal pitfalls while using Redlich–Kister coefficients to estimate partial molar properties of the
omponents. The zero-powered terms, which are the same for the alternative expansions, are shown to yield four-fold the excess molar property for
he equimolar mixture. Literature data for the partial molar volume of water at infinite dilution in 15 neat aminoalkanols at different temperatures
re collected and tabulated. These data generally show a positive dependence of that limiting value on the temperature, the only apparent exception

eing in the case of 1-aminopropan-2-ol. It is demonstrated that the recently published data for this aminoalkanol [S. Mokraoui, A. Valtz, C.
oquelet, D. Richon, Thermochim. Acta 440 (2006) 122–128] were ill-treated and recalculated limiting values are given, which increase with

ncreasing temperature.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The Redlich–Kister equation [1], the form of which mod-
rn authors [2] have traced to Guggenheim [3,4] and Scatchard
5], is a popular method for the algebraic representation of mix-
ng and excess physical and thermochemical properties of binary
iquid mixtures. According to Science Citation Index, by 6 Octo-
er 2007 Redlich and Kister’s paper [1] had been cited 2297
imes.

Over the years, the actual form of the original equation has
volved and several forms, albeit mathematically equivalent, are
urrently in use. We believe that their inter-conversions cover a
itfall in the way to calculate excess partial molar properties
t infinite dilution using Redlich–Kister coefficients, which has

ot yet been discussed.

On the other hand, recently Mokraoui et al. [6] reported
imiting partial molar volumes of water in 1-aminopropan-2-
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l steadily decreasing from 15.3 cm3 mol−1 to 14.5 cm3 mol−1

hen the temperature was risen from 283 K to 353 K. If cor-
ect, this would have been a remarkable finding because the
xpectation is a positive temperature dependence, as observed
n many other aminoalkanols. Actually, it was this strange report
hat guided us across the subtleties of the Redlich–Kister equa-
ion and to the possible blunder underlying the miscalculated
alues.

. The Redlich–Kister expansion

The excess molar volume, V E
m, and many other thermo-

ynamic properties of a binary liquid mixture prepared with
hemical substances 1 and 2 at fixed temperature T and pressure
, are frequently described using the Redlich–Kister equation

1]. Its original form leads to

E
m = x1x2

∑
k

Ak(x1 − x2)k (1)

mailto:jcreis@fc.ul.pt
dx.doi.org/10.1016/j.tca.2007.12.002
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In the latter equation, x1 and x2 are mole fractions, Ak
k = 0–n) are adjustable coefficients and n is the order of the poly-
omial expansion, which should be determined using a statistical
ignificance test such as the F-test.

Following Van Ness and Abbott [7], it is instructive to per-
orm the variable transformation z = x1 − x2. Since x1 + x2 = 1,
hen x1 = (1 + z)/2 and x2 = (1 − z)/2, and therefore:

= x1 − x2 = 2x1 − 1 = 1 − 2x2 (2)

1 − z2

4
= x1x2 = x1(1 − x1) = x2(1 − x2) (3)

In terms of variable z, which varies from −1 to +1, Eq. (1)
ecomes

E
m =

[
1 − z2

4

]∑
k

Akz
k (4)

he latter equation condenses the original face of the
edlich–Kister equation. This face is expressed as a power series
f the independent variable z which can take any of the forms
iven in Eq. (2), and the pre-summation factor variously written
s in Eq. (3). We have chosen the running index k to vary from
to n. Other current choice is to use a running index j from 1 to
, in which case the summation term takes the form �jAjzj−1.
However, the Redlich–Kister equation presents many times

new face, which is algebraically and numerically equivalent to
he original face. In fact, exchanging the component subscripts
n Eq. (1) leads to

E
m = x1x2

∑
k

Bk(x2 − x1)k (5)

e introduce the convenient independent variable s = x2 − x1,
hich also varies from −1 to +1 and is merely equal to −z.
ence x1 = (1 − s)/2 and x2 = (1 + s)/2. As a result:

= x2 − x1 = 2x2 − 1 = 1 − 2x1 (6)

1 − s2

4
= x1x2 = x2(1 − x2) = x1(1 − x1) (7)

E
m =

[
1 − s2

4

]∑
k

Bks
k (8)

Because s = −z, s2 = z2 and the pre-summation factors are
dentical in Eqs. (4) and (8). However, the power terms are
elated by

k = (−1)kzk (9)

nd rewriting Eq. (8) in terms of variable z yields:

E
m =

[
1 − z2

4

]∑
k

Bk(−1)kzk (10)
omparison of Eqs. (4) and (10) gives the following important
esult:

k = Bk(−1)k (11)

i

φ
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n other words, for a given set of experimental data the fit-
ing coefficients Ak obtained using z = x1 − x2 as independent
ariable are related by Eq. (11) to the parameters Bk when
= x2 − x1 is chosen as independent variable. Thus Ak = Bk for

he coefficients of even-powered terms and Ak = −Bk for the
oefficients of odd-powered terms. As stated, this alternate cor-
espondence does not depend on the starting number for the
unning index. Eq. (11) entails an interesting consequence. If,
nadvertently, at an experimental mole fraction x′

2 we calcu-

ate x′
1 x′

2

∑
k

Bk(1 − 2x′
2)k, we obtain V E

m for the composition

′′
2 = 1 − x′

2. In the event x′′
2 is also an experimental mole frac-

ion, this procedure may lead to a false check of calculations.
The physical meaning of A0, which equals B0, is useful in

ractice. Indeed, the equimolar mixture implies x1x2 = 0.25 and
1 − x2 = 0, and consequently at this composition V E

m is given by
.25 × A0. That is, the correctness of computer-fitted A0 values
an be appreciated at a glance by comparing 0.25A0 with table-
r graph-read excess molar values for the equimolar mixture.

. Excess partial molar volumes

Excess partial molar volumes of the components, V E
i , have

any times been estimated using Redlich–Kister coefficients.
rom chemical thermodynamics [7]:

E
i = V E

m + (1 − xi)
dV E

m

dxi

(12)

ere V E
m is calculated using the Redlich–Kister equation in the

orm of Eq. (1), (4), (5) or (8). For the differential dV E
m/dxi,

hich rigorously should be written as the partial derivative
∂V E

m/∂xi)T,p, we note that dz = dx1 − dx2 = 2dx1 = −2dx2 [7]
nd, similarly, that: ds = dx2 − dx1 = 2dx2 = −2dx1.

Of particular interest are the limiting excess partial molar
olumes, V

E,∞
i , from which the corresponding partial molar

olumes at infinite dilution, V∞
i , are easily calculated using the

ollowing relationship, where V ∗
i is the molar volume of pure

ubstance i at the same T and p:

∞
i = V ∗

i + V
E,∞
i (13)

Frequently the expressions relating limiting V
E,∞
i proper-

ies to Redlich–Kister coefficients are obtained from the full,
nvolved expressions for V E

i . All the same, Lampreia and co-
orkers [8] devised a much simpler derivation, which has been

epeated for different properties [9,10]. Thus, making use of the
hermodynamic relationship between the excess molar volume
f a binary mixture and the excess apparent molar volume of
omponent i, φ(Vi)E:

(Vi)
E = V E

m

xi

(14)
n terms of Eq. (4) we obtain

(V1)E =
[

1 − z

2

]∑
k

Akz
k (15)
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(V2)E =
[

1 + z

2

]∑
k

Akz
k (16)

nother thermodynamic result is

im(xi = 0) φ(Vi)
E = V

E,∞
i (17)

ince x1 = 0 for z = −1 and x2 = 0 for z = 1, from combining Eqs.
15)–(17) follow that

E,∞
1 =

∑
k

Ak(−1)k (18)

E,∞
2 =

∑
k

Ak (19)

oth Eqs. (18) and (19) are well-known results.
In a similar fashion, from Eqs. (8) and (14) we write

(V1)E =
[

1 + s

2

]∑
k

Bks
k (20)

(V2)E =
[

1 − s

2

]∑
k

Bks
k (21)

urthermore, because now x1 = 0 for s = 1 and x2 = 0 for s = −1,
e obtain

E,∞
1 =

∑
k

Bk (22)

E,∞
2 =

∑
k

Bk(−1)k (23)
As before, Eqs. (22) and (23) are not new. However, in view
f Eq. (11), they may constitute an unsuspected pitfall for the
ess-experienced researcher if Ak coefficients are mistaken as Bk
oefficients or the other way round.

(
b
u
[

able 1
cronym, nomenclature and chemical formula of aminoalkanols of interest

cronym Common name IUPAC na

EA Ethanolamine 2-Aminoe
PA Isopropanolamine 1-Aminop

MEA N-Methylethanolamine 2-(Methy
MP – 2-Amino-
EEA N-Ethylethanolamine 2-(Ethyla
MEA N,N-Dimethylethanolamine 2-(Dimet
EA Diethanolamine 2,2′-Imin
EEA – 2-((2-Am
-PEA N-Propylethanolamine 2-(Propyl
DEA N-Methyldiethanolamine 2,2′-(Met
EEA N,N-Diethylethanolamine 2-(Diethy
IPA Diisopropanolamine 1,1′-Imin
DEA N-Ethyldiethanolamine 2,2′-(Ethy
EA Triethanolamine 2,2′,2′′-N
-BDEA N-Butyldiethanolamine 2,2′-(Buty
chimica Acta 468 (2008) 119–123 121

. The dependence on temperature of the limiting
artial molar volume of water in aminoalkanols

The partial molar volume of water at infinite dilution in
rganic solvents and its isobaric variation with temperature are
aluable probes for understanding the nature of aqueous liquid
ixtures. In this field, most authors use subscript 1 to identify

omponent water and subscript 2 for the organic component. Fol-
owing this convention, we will be primarily interested in V∞

1
nd (∂V∞

1 /∂T )
p

when the organic solvent is an aminoalkanol,
or which there is a wealth of published thermodynamic data.

The volumetric properties of 15 aqueous aminoalkanol
ystems over the entire composition range and at different tem-
eratures have been investigated in recent years by research
roups led by Mather [11–15], Palepu [16,17], Henni [18–21],
ampreia [9] and Richon [6]. The names and formulae of these
5 aminoalkanols are given in Table 1.

The collection of aminoalkanols in Table 1 shows a large
ariety of structures and includes primary and secondary alco-
ols, mono-ols, diols and one triol, and primary, secondary and
ertiary amines, and also one diamine. On the basis of published
∞
1 values and of V∞

1 values calculated by us using published
edlich–Kister coefficients and density data for water taken

rom Ref. [22], together with Eq. (13), we constructed Table 2.
Analysis of Table 2 shows that, with very few irregulari-

ies, V∞
1 increases with increasing temperature, except for the

riginal values reported for water in 1-aminopropan-2-ol. This
minoalkanol contains a secondary alcohol and primary amine
unctional groups and the noted apparent exceptional depen-
ence of V∞

1 on temperature seems puzzling. Although the
hermodynamic relationships used in Ref. [6] are faultless, on
loser inspection we found that the Redlich–Kister coefficients
n Table 4 in Ref. [6] only reproduced experimental V E

m values
hile using Eq. (8) in spite of the fact that the Redlich–Kister

xpansion and derived equations in Ref. [6] are in terms of Eq.

4). In short, in Table 5 in Ref. [6] the subscripts for V

E,∞
i should

e interchanged. Furthermore, back calculations performed by
s demonstrated that reported V∞

i values for both components
6] were miscalculated in terms of Eq. (13) by combining V

E,∞
i

me Structural formula

thanol NH2CH2CH2OH
ropan-2-ol CH3CH(OH)CH2NH2

lamino)ethanol CH3NHCH2CH2OH
2-methylpropan-1-ol (CH3)2C(NH2)CH2OH
mino)ethanol CH3CH2NHCH2CH2OH
hylamino)ethanol (CH3)2NCH2CH2OH
obisethanol NH(CH2CH2OH)2

inoethyl)amino)ethanol NH2CH2CH2NHCH2CH2OH
amino)ethanol CH3CH2CH2NHCH2CH2OH
hylimino)bisethanol CH3N(CH2CH2OH)2

lamino)ethanol (CH3CH2)2NCH2CH2OH
obispropan-2-ol NH(CH2CH(OH)CH3)2

limino)bisethanol CH3CH2N(CH2CH2OH)2

itrilotrisethanol N(CH2CH2OH)3

limino)bisethanol CH3CH2CH2CH2N(CH2CH2OH)2
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Table 2
Partial molar volume of water (cm3 mol−1) at infinite dilution in aminoalkanols at different temperatures

T (K) MEA IPA MMEA AMP

278.15 15.8 [13] – – – 15.2 [13]a – – – –
283.15 – – (15.3) [6] 14.7b – – – – –
288.15 15.9 [13] – (15.2) [6] 14.8b 15.3 [13]a 15.3 [21] – – –
293.15 – – (15.1) [6] 14.8b – – – – –
298.15 16.1 [11] 16.0 [16] (15.0) [6] 14.9b 15.3 [13]a – – – –
303.15 16.2 [11] – (15.0) [6] 14.9b 16.0 [13]a 15.3 [21] – – –
308.15 – 16.9 [16] (14.9) [6] 15.0b – – 15.1 [17]a 15.1 [15] –
313.15 16.3 [11] – (14.8) [6] 15.1b 15.2 [13]a 15.4 [21] 15.1 [17]a – 14.5 [18]
318.15 – 17.3 [16] (14.8) [6] 15.1b – – 15.2 [17]a – –
323.15 – – (14.7) [6] 15.1b – 15.5 [21] 15.2 [17]a 15.2 [15] 15.2 [18]
328.15 – – (14.7) [6] 15.2b – – 15.2 [17]a – –
333.15 16.4 [11] – (14.6) [6] 15.3b 15.4 [13]a 15.8 [21] 15.2 [17]a – 15.4 [18]
338.15 – – (14.6) [6] 15.3b – – 15.3 [17]a – –
343.15 – – (14.6) [6] 15.3b – 15.9 [21] 15.3 [17]a 15.4 [15] 15.1 [18]
348.15 – – (14.6) [6] 15.4b – – 15.4 [17]a – –
353.15 16.4 [11] – (14.5) [6] 15.5b 15.2 [13]a – 15.5 [17]a 15.8 [15] –

T (K) MEEA DMEA DEA AEEA n-PEA MDEA

278.15 14.9 [14]a – – 12.8 [13]a – – – – – –
283.15 – 13.3 [9]c – – – – – – – –
288.15 14.5 [14]a 11.6 [9]c – 12.4 [13]a – – – – – –
293.15 – 12.3 [9]c – – – – – – – –
298.15 14.8 [14]a 14.0 [9]c 11.3 [16] 13.6 [13]a 16.9 [11] 16.9 [16] 15.0 [20] 15.0 [15] 14.2 [12] 15.3 [16]
303.15 14.4 [14]a 14.1 [9]c – 13.0 [13]a 16.5 [11] – 15.0 [20] 15.2 [15] 14.0 [12] –
308.15 – – 13.3 [16] – – 16.5 [16] – – – 16.3 [16]
313.15 14.5 [14]a – – 13.7 [13]a 16.6 [11] – 15.0 [20] 15.2 [15] 14.4 [12] –
318.15 – – 14.6 [16] – – 17.3 [16] – – – 16.5 [16]
323.15 – – – – 17.0 [11] – 15.1 [20] – 14.3 [12] –
333.15 14.8 [14]a – – 13.3 [13]a 17.6 [11] – 15.3 [20] 15.9 [15] 14.6 [12] –
343.15 – – – – 18.3 [11] – 15.5 [20] – 14.8 [12] –
353.15 15.2 [14]a – – 14.5 [13]a 17.9 [11] – – 16.3 [15] 15.5 [12] –

T (K) DEEA DIPA EDEA TEA n-BDEA

278.15 – 16.4 [14]a – – – – – –
288.15 – 14.3 [14]a – – – – – –
298.15 8.7 [16] 13.7 [14]a – 14.4 [12] 13.6 [16] 16.0 [11] 16.0 [16] 15.0 [15]
303.15 – 11.5 [14]a – 14.4 [12] – 16.0 [11] – 15.0 [15]
308.15 9.5 [16] – – – 14.9 [16] – 16.4 [16] –
313.15 – 10.6 [14]a – 14.4 [12] – 16.0 [11] – 15.1 [15]
318.15 11.7 [16] – 12.4d [19]a – 15.4 [16] – 16.9 [16] –
323.15 – – 12.9 [19]a – – – – –
333.15 – 18.9 [14]a 13.7 [19]a 14.7 [12] – 16.3 [11] – –
343.15 – – 16.1 [19]a – – – – –
353.15 – 19.0 [14]a – 15.3 [12] – 16.8 [11] – 15.9 [15]

a Calculated in terms of Eq. (13) using the Redlich–Kister coefficients reported in this reference and density data for water from Ref. [22].
b Recalculated in terms of Eq. (13) using the Redlich–Kister coefficients reported in Ref. [6] and density data for water from Ref. [22].
c Calculated in terms of Eq. (13) using the V

E,∞
1 values reported in Ref. [9] and density data for water from Ref. [22].

d At 318.65 K.
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or a given component with V ∗
i for the other component. Using

he same Redlich–Kister coefficients, in Table 2 we present
ecalculated values of limiting partial molar volumes of water
n 1-aminopropan-2-ol that nicely show the expected positive
ependence on temperature.

. Conclusion

We have condensed the various, equivalent forms found in
he literature to express the Redlich–Kister expansion into Eqs.
4) and (8), which typify faces A and B of this flexible equation
or describing excess molar thermodynamic data of binary liquid
ixtures. Using a single mole fraction as variable, Eq. (4) for

ace A unfolds into:

E
m = x1(1 − x1)

∑
k

Ak(2x1 − 1)k (24)

E
m = x2(1 − x2)

∑
k

Ak(1 − 2x2)k (25)

imilarly, from Eq. (8) for face B:

E
m = x1(1 − x1)

∑
k

Bk(1 − 2x1)k (26)

E
m = x2(1 − x2)

∑
k

Bk(2x2 − 1)k (27)

The relationship Ak = Bk (−1)k obtained in Eq. (11) allows an
asy comparison between coefficients reported in terms of one
ace and the corresponding coefficients calculated by software
repared for use in terms of the other face. Similar care should
e taken when evaluating V

E,∞
1 and V

E,∞
2 in terms of fitted

oefficients.
We demonstrate that A0 = B0 = 4V E

m (at x1 = x2 = 0.5).
We compiled literature data for the effect of temperature

n the partial molar volume of water at infinite dilution in 15
minoalkanols. These data (Table 2) strongly suggest a positive
ependence on temperature, the only apparent exception being
n 1-aminopropan-2-ol [6]. We show that the aforementioned

ual aspect of the Redlich–Kister equation is most probably at
he origin of these reported strange values, which after proper
alculation yielded the expected positive dependence on tem-
erature.

[
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